Cayley-Hamilton Theorem

Theorem

Every square (n×nn \times n) matrix satisfies its own characteristic equation.

If the characteristic polynomial is p(λ)=det(λIA)=λn+an1λn1+...+a1λ+a0p(\lambda) = \det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1}+...+a_1\lambda + a_0 then from Cayley Hamilton theorem, p(A)=An+an1An1+an2An2+...+a1A+a0I=Θp(A) = A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2}+...+a_1 A + a_0 I = \Theta where Θ\Theta is the zero matrix.

Any power of AA can be written as a linear combination of I,A,A2,...,An1I, A, A^2, ..., A^{n-1}

Any function which has a convergent power series expansion can be expressed as a linear combination of I,A,A2,...,An1I, A, A^2, ..., A^{n-1} f(A)=γn1An1+γn2An2+...+γ1A+γ0I=j=0n1γjAjg(A)f(A) = \gamma_{n-1}A^{n-1} + \gamma_{n-2}A^{n-2} + ... + \gamma_1 A + \gamma_0 I = \sum_{j=0}^{n-1} \gamma_j A^j \triangleq g(A) which is a finite polynomial.

Consider diagonalizable AA matrix, then, there exists a nonsingular matrix TT such that T1AT=ΛT^{-1} A T = \Lambda where Λ=diag(λ1...λn)\Lambda = \operatorname{diag}(\lambda_1...\lambda_n).

Then, f(Λ)=j=0n1γjΛj=g(Λ)f(\Lambda) = \sum_{j=0}^{n-1} \gamma_j \Lambda^j =g(\Lambda)

It follows that f(λi)=j=0n1γjλij=g(λi)fori=1,2,...,nf(\lambda_i) = \sum_{j=0}^{n-1} \gamma_j \lambda_i^j = g(\lambda_i) \quad \text{for} \quad i = 1,2,...,n

By choosing γ0,γ1,...γn1\gamma_0, \gamma_1,...\gamma_{n-1} to satisfy this equation we make f(A)=g(A)f(A) = g(A).

Theorem

For any two arbitrary polynomial functions f(λ)f(\lambda) and g(λ)g(\lambda) such that djf(λi)dλj=djg(λi)dλjfori=1,...,s;j=0,...,ni1\frac{d^j f(\lambda_i)}{d\lambda^j} = \frac{d^j g(\lambda_i)}{d\lambda^j} \quad \text{for} \quad i=1,...,s; \quad j=0,...,n_{i-1} (i.e. values of ff and gg on spectrum of AA are equal), then f(A)=g(A)f(A) = g(A).

This theorem is utilized in a special case above.

Application to finding matrix exponential

Matrix exponential can be found as follows,

#incomplete


References

  1. https://crrl.poly.edu/6253/lectures/lect5.pdf
  2. https://mathworld.wolfram.com/Cayley-HamiltonTheorem.html
  3. P. E. Sarachik, Principles of Linear Systems, Cambridge Press, 1996, pp. 75-77.